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We focus the problem of establishing when a statistical mechanics system is determined
by its free energy. A lattice system, modelled by a directed and weighted graphG (whose
vertices are the spins and its adjacency matrix M will be given by the system transition
rules), is considered. For a matrix A(q), depending on the system interactions, with
entries which are in the ring Z[aq : a ∈ R+] and such that A(0) equals the integral matrix
M , the system free energy βA(q) will be defined as the spectral radius of A(q). This kind
of free energy will be related with that normally introduced in Statistical Mechanics
as proportional to the logarithm of the partition function. Then we analyze under what
conditions the following statement could be valid: if two systems have respectively
matrices A, B and βA = βB then the matrices are equivalent in some sense. Issues of this
nature receive the name of rigidity problems. Our scheme, for finite interactions, closely
follows that developed, within a dynamical context, by Pollicott and Weiss but now
emphasizing their statistical mechanics aspects and including a classification for Gibbs
states associated to matrices A(q). Since this procedure is not applicable for infinite
range interactions, we discuss a way to obtain also some rigidity results for long range
potentials.

KEY WORDS: rigidity problems, statistical mechanics systems, free energy, Gibbs
states

1. INTRODUCTION

Let � be a finite set of spins and M a positive integral card � × card �–matrix
with entries M(i, j). The space of admissible configurations is defined as the set
�M = {x : x = (xk)k∈Z+ : M(xk, xk+1) �= 0, xk ∈ �} according to which any site
k has a spin xk ∈ �. The matrix M can be interpreted as giving the transition
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rules for the interactions between sites. From M a finite directed graph GM can be
constructed whose vertices are labeled by the elements of � and where there are
M(i, j) edges from a vertex i to a vertex j .

Let Exp = {aq : a ∈ R++}, where R++ = {a ∈ R : a > 0}, thus the ring
Z[Exp] will be formed by the maps f : R → R++ with f (q) = ∑r

i=1 ni a
q
i , ni ∈

Z. Similarly is considered the ring Z+[Exp] = { f : f (q) = ∑r
�=1 n�aq

� , n� ∈
Z+}.

The set of m × m−matrices A(q)′s with entries in Z+[Exp] is denoted
by Mm(Z+[Exp]). Then we associate to each A(q) ∈ Mm(Z+[Exp]) the di-
rected graph: GA(q) := GA(0). Notice that A(0) is an integral matrix. For any
pair of vertices of GA(q) the entry i, j of A(q) has the form A(q)(i, j) =∑r

�=1 aq
� (i, j), so that there are exactly r = r (i, j) edges from the vertex i

to the vertex j. The coefficients a� are now bijectively assigned to these
edges.

Thus we may have determined a one-dimensional statistical mechanics sys-
tem by A(q) and the consequents GA(q) := GA(0), �A(q) := �A(0). For instance in
the basic and well known Ising model r = 1, a�(i, j) = exp(J i j), i, j ∈ {−1, 1}
(J is the coupling parameter). For simplicity, we shall denote the associated
graph directly by GA and the space of configurations by �A. For a configura-
tion x ∈ �A, we denote by �n(x) the truncation of the infinite sequence x to
its first n terms, therefore �n(x) will be represented by a path γ in GA. Each
path will be a sequence γ = e0 . . . en−1, where each ei is an edge in GA from
one vertex to another. In this case we shall say that the path has length n and
we write |γ | = n. Now, we can consider the space of configuration �A consti-
tuted by “infinite length” paths γ = e0e1 . . . , with ei is an edge in GA, and where
both initial vertex and terminal vertex of ei are identified with spins of the sys-
tem. We call admissible paths in GA to those representing admissible sequences.
To any edge e of the graph GA will be assigned a weight wA(e) and the path
γ = e1 . . . en will have weight wA(γ ) = ∏n−1

i=0 wA(ei ).The closed paths in GA

are called cycles. For instance, for Markov systems the weight assigned to any
edge from a vertex i to a vertex j is a probability Pi, j . This example shows
that the consideration of weighted graphs allows to study more general systems
than particles interacting via pair wise potentials, like the above mentioned Ising
model.

For any spin i ∈ �, let ei,0, . . . , ei,r−1 the edges in GA starting in i , thus for
any pair (i, ei, j ) we can form a vector vi indexed by the vertices of GA, which
j th-coordinate will be given by wA(i, ei, j ) , where wA(i, ei, j ) is the weight of the
edge from i to j . By the bijective assignation of the coefficients to the edges the
entries of the matrix A(q) are given by weights of the edges, in particular the sum∑r

j=1 wA(i, ei, j ) equals the i th-row of A(q).
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For a system (GA, �A), where A is an irreducible matrix over Z+[ exp] we
introduce the free energy

βA(q) = ρ(A(q)), (1)

where ρ(A) is the spectral radius of A. By the Perron–Frobenius theorem βA(1)
has a single eigenvalue.

We shall also consider a definition of a free energy function per particle
in the more customary way from the partition function Zn(q) = Zn(q, A) =∑

|γ |=n w
q
A(γ ), where the sum is extended over all the cycles of length n:

FA(q) = lim
n→∞

1

n
log(Zn (q)). (2)

Thus q can be interpreted as the inverse of the temperature.
The quantities βA(q) and FA(q) can be related in the following way: a string

(i0, i1,...,in−1) is called admissible for a positive integral matrix A if A(i0, i1) ×
A(i1, i2) × · · · × A(in−2, in−1) �= 0. A n−periodic string is that in which in−1 = i0,

therefore there is a one to one correspondence between the periodic strings and
the cycles of the graph associated to A. In this way if Pn denotes the set of the set
of n− periodic strings then card Pn = ∑

(i0,i1,...,in−1) A(i0, i1) × A(i1, i2) × · · · ×
A(in−2, in−1) = T r (An) and so that

Zn (q) = T r (An(q)), (3)

from which is obtained βA(q) = exp(FA(q)).
Another important quantity is the Ruelle zeta function(11)

ζA(z, q) = exp

[ ∞∑

n=1

Zn (q)
zn

n

]

, (4)

which gives an analytical map in the disc |z| < exp(βA(q)). We can express the
zeta map as ζA(z, q) = exp[

∑∞
n=1 T r (An(q)) zn

n ] = exp[T r (− log(I − z A(q)))] =
1

det(I−z A(q)) .

To any system (GA, �A) can be associated the non-marked spectrum
SA = {(wA(γ ), n) : γ is a cycle with |γ | = n} and the marked spectrum LA =
{(wA(γ ), γ ) : γ is a cycle with |γ | = n}. There are different equivalence relations
between matrices in such a way that elements in the same equivalence classes share
the same spectrum. If A, B ∈ Mn(Z+[ exp]), let

i) A ∼1 B if and only if log wA(e0) = log wB(e0) + U (e0) + U (e1) for any
edge with initial vertices e0, e1 and for some map U .

ii) A ∼2 B if and only if A(q)(i, j) = B(q)(σ (i), σ ( j)), for any i, j , where
σ : � → � is some permutation of the states.
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Then is valid: A ∼1 B ⇒ LA = LB and A ∼2 B ⇒ SA = SB, and on the
other hand SA = SB ⇒ βA = βB . One of the objectives of this article is to analyze
under which conditions the free energy determines the matrix or the spectrum of
the system, up to equivalence, i.e. when, in some sense, the reciprocal of the above
implications hold, or in other words when the free energy is a complete invariant.
This falls in the category of the so called rigidity problems.

Remark. To obtain equivalent matrices necessarily the corresponding graphs
should be isomorphic. Recall that two graphs G1,G2 if there is one to one map ϕ

which carries any vertex of G1 in a vertex of G2 and such that if there are k edges
from v1 to v2 then there are k edges from ϕ(v1) to ϕ(v2). Now to produce examples
of non-equivalent matrices it must be considered non isomorphic graphs.

Another issue to be considered is about the Gibbs states: if x is a configuration
and γ = e0 . . . en−1 is the path in GA obtained from the truncation of x to the
first n symbols then Hn(γ ) := − log wA(γ ) = −∑n−1

i=0 log wA(ei ) may be seen as
describing the interaction between the spins in GA. The interaction on the entire
configuration can be written as Hn(γ ) + W (γ | γ c), where W (γ | γ c) describes
the interaction energy between the spins joined by the edges in γ and those joining
the remaining spins of the configuration. The choice of paths in GA correspond to a
selection of certain boundary conditions for the spin system, if periodic boundary
conditions are chosen then the cycles are considered. Thus for the Hamiltionian
Hn the Gibbs ensemble of finite volume n can be taken as the probability measure

µn,A(q)({γ }) = w
q
A(γ )

∑
|γ |=n w

q
A(γ )

= w
q
A(γ )

Zn(q)
= exp(−q Hn)

Zn(q)
, γ = e0 . . . en−1.

The Gibbs states µA(q) associated to a matrix A(q) are weak accumulation points
of finite volume ensembles, i.e.

µA(q) = lim
k→∞

µnk ,A(q),

for some sequence {nk}. By the compactness of the space of measures on �A, such
accumulation point does exist.

For γ = e0 . . . en−1 the cylinder Cn = Cn(γ ) is the set

{x ∈ �A : xi = ei , i = 0, 1, . . . , n − 1} .

We shall prove that for every n, q and for any path γ of length n, there are constants
A1, A2 > 0 such that

A1 ≤ µA(q)(Cn(γ ))

w
q
A(γ ) exp(−nFA(q))

≤ A2 (5)
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or

A1 ≤ µA(q)(Cn(γ ))

w
q
A(γ )(βA(q))−n

≤ A2. (6)

So that these Gibbs states become equilibrium states, for the free energies FA or βA,

in the sense of the Ruelle thermodynamic formalism. (11) For irreducible matrices
in Mm(Z+[ exp]) the map βA(q) is real analytic (12) and so by the thermodynamic
formalism there is an unique Gibbs state µA(q) for each real q. Recall that a matrix
A is irreducible if for any i, j there is a positive integer m such that all the entries
of H m

i, j are strictly positive. A matrix A is aperiodic or transitive if there is a
positive integer m such that all the entries of H m

i, j are strictly positive.
We shall obtain a classification of the equilibrium states in terms of the

unmarked spectrum, more specifically the result to be presented reads: µA = µB

if and only if there is a constant C > 0 such that wA(γ ) = wB(γ )Cn , for any
positive integer n and for any cycle γ with |γ | = n.

In Ref. 10, Pollicott and Weiss have considered a free energy obtained from
a partition function defined as the statistical sum of the potential over the periodic
points of the dynamic map. They proved that for finite range potentials this free
energy determines the potential up to some equivalence. The free energy they
consider is associated to finite range potentials ϕ : �A → R, depending on a finite
number of coordinates. For example depending on two coordinates, the matrix
A(q) can be defined by A(q)(i, j) = A(i, j) exp(qϕ(x0, x1)), with x0 = i, x1 = j .
Although some of our proofs for the finite interaction case closely follows those
from Pollicot and Weiss, our framework (using directed graphs) is more general
in the sense that it is valid not only for interaction potentials, but for more general
situations, e.g. Markov chains.

If we are in the more general situation in which potentials depend on the
whole configuration, we must work with other class of objects than matrices.
They will be transfer operators, in the style of those introduced by Ruelle in his
thermodynamic formalism, and the aim will be to obtain some kind of rigidity
result.

2. COMPLETE INVARIANCE OF THE FREE ENERGY

FOR FINITE INTERACTIONS

Let us consider the polynomial DA(z, q) = det(I − z A(q)) ∈ R[z] (R =
Z+[ exp]), so that DA(1/βA(q), q) = 0. By a result in Ref. 12 it can be established
that DA(z, q) is minimal for βA in the following sense: if Q ∈ R[z] is another poly-
nomial with 1/βA(q) as a root, with A an irreducible matrix, then DA divides Q in
R[z]. There is a direct relationship between DA and the characteristic polynomial
PA(z, q) = det(z I − A(q)) of the matrix A, indeed DA(z, q) = zm PA(z−1, q), for
a m × m−matrix. Therefore the characteristic polynomial is also minimal among
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those for which βA(q) is a zero. If it were proved that DA is irreducible then βA(q)
would determine DA, because the polynomial for the free energy is minimal. The
same occurs for the characteristic polynomial by the relationship of above.

Proposition 1. Let A = A(q) be an aperiodic matrix with entries in Mm

(Z+[ exp]) having the following property: any non-trivial product of powers of
its entries is different form the unity. Then DA(z, q) is irreducible, i.e. it cannot be
written as a product of two non-constant polynomials in R[z].

Proof: We can express DA(z, q) = det(I − z A(q)) = 1 +∑m
�=1 C�(q)z�, where

C�(q) =
∑

(i1 ,i2,..., ir )
i1+i2+···+ir =�

(−1)r

r !

r∏

j=1

1

i j
tr (Ai j (q))

or also DA(z, q) = ∏m
i=1(1 − zEi ), where Ei = Ei (q) are the eingenvalues of A,

counted with their algebraic multiplicity. For instance for m = 2 we have with
the first expression DA(z, q) = z2 − tr (A(q))z + [tr (A(q))2 − tr (A2(q))]z2 =
z2 − tr (A(q))z + det(A(q)) and with the second one DA(z, q) = z2 − (E1 +
E2)z + E1 E2, of course both two expressions are equal by the invariance of the of
conjugation A with a diagonal matrix. We can thus interchange the coefficients,
for instance we may adopt the development 1 − tr (A(q))z + · · · + (

∏m
i=1 Ei )zm .

Let us assume that there exists R(z, q), S(z, q) ∈ R[z], non-constant, such
that DA(z, q) = R(z, q). S(z, q) or

1 − tr (A)z + · · · +
(

m∏

i=1

Ei

)

zm = (1 + R1z + · · · + Rm−k zm−k)

× (1 + S1z + · · · + Sk zk), (7)

with Rm−k = ∑
i ni e

q
i and Sk = ∑

j m j f q
j . By comparing the terms of DA and the

product of R and S, we firstly have
∑

i, j ni m j e
q
i f q

j = ±∏m
i=1 Ei , so that the ni m j

will be equal to a product
∏

j A( j, σ ( j)), for some permutation σ of n elements. If
are now compared the coefficients of zm−k and zk deduces that the eq

i and f q
j have

the form
∏

j A( j,σ ( j))
∏m=k

�=1 A(i�,i�)
, where σ is a permutation which in one case fixes the indexes

(i1, . . . , ik) and the (i1, . . . , im−k) in the other. However the term
∏n

i=1 A(i, σ (i)),
with σ a permutation with no fixed point, will appear in some term of det(I −
z A(q), but it cannot be expressed as a product eq

i f q
j by the enunciated property of

the matrix. Let us display this situation for n = 2, the coefficient of z2 contains
sums of elements of the form A(i, i)A( j, j) − A(i, j)A( j, i) and it should be
needed A(1, 2)A(2, 3)A(3, 4)A(4, 1), which corresponds to the cyclic permutation
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(1, 2, 3, 4) → (2, 3, 4, 1), equal a term of the form A(i, j)A( j, i)A(r, s)A(s, r ),
which is not possible by the property of the matrix. �

We illustrate with two examples:

Example 1. We consider the Ising model, for which A(q) =
(

exp(J q) exp(−J q)

exp(−J q) exp(J q)

)
.

If DA(z, q) could be factorized as a product of two linear non-constant
polynomials then it would have: DA(z, q) = det(I − z A(q)) = z2 − tr (A(q)z+
det(A(q) = (z −∑

i ni e
q
i )(z −∑

j m j f q
ji ), and so z2 − tr (A(q)z − det(A(q) =

z2 − (
∑

i ni e
q
i +∑

j m j f q
ji )z +∑

i, j ni m j e
q
i f q

j . From this is obtained that
∑

i ni e
q
i +∑

j m j f q
j = tr (A(q) = 2 exp(J q) and

∑
i, j ni m j e

q
i f q

j = det(A(q) =
exp(2J q) − exp(−2J q). Therefore ni m j = exp(2J ) or ni m j = exp(−2J ), in
particular exp(4J ) = 1, but it is no possible unless J = 0, which is not the case.

Example 2. Let us consider a more bit general interaction, whose matrix
has entries A(q)(i, j) = exp(−qa(i, j)), i, j = 1, 2, for a given a > 0 de-
pending of two spins. Now DA(z, q) = z2 − tr (A(q))z + det(A(q)) can be
factorized in R[z] as product of two linear factors whenever the discriminant
� = (tr (A(q))2 − 4 det(A(q)) could be expressed as (

∑
i ni e

q
i )2, for some

ni , ei .We have tr (A(q) = exp(−qa(1, 1)) + exp(−qa(2, 2)) and det(A(q)) =
exp(−qa(1, 1)) exp(−qa(2, 2)) − exp(−qa(1, 2)) exp(−qa(2, 1)). Thus � =
[exp(−qa(1, 1)) − exp(−qa(2, 2))]2 − 4 exp(−qa(1, 2)) exp(−qa(2, 1)), and
hence the condition on the discriminant cannot be satisfied since exp(−qa(1, 2))
exp(−qa(2, 1)) �= 0.

To see how the free energy determines DA(z, q) in the case of 2 × 2 ma-

trices, let us notice that 1
βA(q) = tr (A(q)+

√
(tr (A(q))2−4 det(A(q))

2 , therefore if � =
(tr (A(q))2 − 4 det(A(q) �= 0 then the free energy determines tr (A(q) as well
as
√

(tr (A(q))2 − 4 det(A(q)) and so det(A(q)) will be also determined by βA(q).
Now DA(z, q) = z2 − tr (A(q)z + det(A(q)) is completely determined by the free
energy.

Thus we have, as by the comment of above, that the free energy determines
the minimal polynomial DA(z, q) and also the characteristic polynomial of A.

Lemma 1. The zeta function ζA(z, q) determines the spectrum SA.

Proof: Let ζA(z, q) = exp[
∑∞

n=1 Zn(q) zn

n ], which has radius of convergence
exp(βA(q)). Now the coefficients of the series can be uniquely obtained deriv-
ing with respect to q. Then from Zn(q) = ∑

|γ |=n w
q
A(γ ) the numbers wA(γ ) are
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uniquely determined up to permutation, this follows from Newton identities. So
the spectrum is completely determined from the zeta function. �

Therefore combining Proposition 1 and Lemma 1, and recalling that
ζA(z, q) = 1

det(I−z A(q)) = 1
DA(z,q) , we have that for matrices, with the property in

the statement of the Proposition1 the free energy βA(q) determines the spectrum
SA, or βA = βB =⇒ SA = SB .

Proposition 2. The polynomial DA(z, q), with A an aperiodic matrix with entries
in Mn(Z+[ exp]), determines the ∼2 equivalence class of the matrix A, or DA =
DB =⇒ A ∼2 B.

Proof: Let us consider the development of DA(z, q) displayed in the above
proposition (the first one):

det(I − z A(q)) = 1 +
n∑

i=1

Ci (q)zi , with

Cn(q) =
∑

(i1 ,i2,..., ir )
i1+i2+···+ir =n

(−1)r

r !

r∏

j=1

1

i j
tr (Ai j (q)).

The terms in tr (A) can be determined by the Lemma 1. The coefficient of
z2 consists of elements with the form A(q)(i, i)A(q)( j, j) − A(q)(i, j)A(q)( j, i),
by the invariance of det(I − z A(q)) by conjugation by diagonal matrices it can be
considered without loss of generality that A( j, 1) = 1, for any j. Then the prod-
ucts A(q)(i, j)A(q)( j, i) can be calculated from the elements A(q)(i, i)A(q)( j, j)
belonging to the trace and so possible of be computed from the earlier step.

The coefficient of z3 involves triple products of the form A(q)(i, i)
A(q)( j, j)A(q)(k, k) and triple products of entries of A(q) with different co-
ordinates. The terms with the same coordinate are known. In particular in the
expression appear terms A(q)(i, i)A(q)( j, k)A(q)(k, i), the A(q)(i, i) as we say
are already determined and by the above process can be also obtained, and also by
above can be determined elements of the form A(q)(i, i)A(q)( j, k)A(q)(k, j). To
obtain the general term A(q)(k, i), let

A(q)(1, i)A(q)(i, j) = A(q)(1, i)A(q)(i, j)A(q)(k, i)

A(q)(k, i)
, (8)

the element A(q)(1, i)A(q)(i, j) is a factor in a term of the coefficient of z3

and the A(q)(1, i) are already known. In the coefficients of z3 appear products
of the form A(q)(i, j)A(q)( j, k)A(q)(k, i) and in particular those of the form
A(q)(i, 1)A(q)(1, k)A(q)(k, i) = A(q)(1, k)A(q)(k, i), then multiplying (10) by
A(q)(1, k) is obtained a term in the the coefficient of z3, and thus is determined
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A(q)(k, i) by known entries. This process can be inductively iterated to recover
the coefficients of DA(z, q).

The characteristic polynomial of a matrix A is invariant by conjugation of A by
a permutation matrix, i.e. a matrix in which any column, or row, is a vector with only
coordinate equal 1 and the others 0. For a m × m–matrix there are m! permutation
matrices and so it can be proved that there are many finitely matrices with the
same characteristic polynomial. Therefore the characteristic polynomial, and do
the polynomial DA determines the matrix, up to to conjugation by permutation
matrices.

Let now A(q), B(q) such that B(q) = P−1 A(q)P, where P is a permutation
matrix. If σ is a permutation of m elements, i.e. σ : {1, 2, . . . m} → {1, 2, . . . m} bi-
jective, then we denote (B ◦ σ )(q)(i, j) = B(q)(σ (i), σ ( j)) = ∑

� aq
� (σ (i), σ ( j)).

Let σ be the permutation obtained in the following way: if

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

p1

p2

.

.

.

pm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

p11 p12 . . . p1n

p21 p22 . . . p2n

. . . . . .

. . . . . .

. . . . . .

pm1 pm1 . . . pmm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

then for a row vector pi = (0, 0, . . . 1, . . . , 0) is σ (i) = j, i.e. σ in each i ∈
{1, 2, . . . m} indicates the place in which the vector pi has the 1. For instance in

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ σ (1) = 1, σ (2) = 3, σ (3) = 2.

Therefore it has B(q)(i, j) = P−1(i, j)A(q)(i, j)P(i, j) = ∑
r

∑
s prs ps j A(q)

(i, j) and B(q)(σ (i), σ ( j)) = ∑
r

∑
s prs ps j A(q)(σ (i), σ ( j)) but prs ps j =

δi,σ (r )δ j,σ (s), thus (B ◦ σ )(q) = A(q) and so A ∼2 B. �

Finally we arrive to

Theorem 1. Let (GA, �A) be a representation of a lattice system with m spins,
where the matrix A(q) ∈ Mm(Z+[ exp]) has the property that any non-trivial
product of powers of its entries is not equal to 1. Then the free energy βA uniquely
determines the matrix A, up to ∼2equivalence.

Proof: Follows linking the above results. �
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3. CLASSIFICATION OF GIBBS STATES ASSOCIATED TO

MATRICES BY THE NON-MARKED SPECTRUM

In our approach we are considering matrices as some kind of “observable,” and
in the introduction we have anticipated a notion of Gibbs states associated to
a matrix which entries in Mm(Z+[ exp]) and the corresponding directed and
weighted graphs. Recall that it was done by introducing the n volume—Gibbs
ensembles µn,A(q) as point mass distributions with mass w

q
A(γ ), for a path γ of

length n, and Gibbs-Boltzmann factor Zn(q) = ∑
|γ |=n w

q
A(γ ). The Gibbs state

µA(q) is defined as a “thermodynamic limit” of the finite volume ensembles. Recall
also that the cylinder of length n for a path γ = e0 . . . en−1 is the set

Cn = Cn(γ ) = {x ∈ �A : xi = ei , i = 0, 1, . . . , n − 1} .

The space of configurations �A can be partitioned in cylinders: we can consider,
see introduction, the configurations identified with infinite paths γ = e0e1 . . . in
GA, let us denote by in(e) the initial vertex of e, and if � = {0, 1, . . . , m − 1} is
the numeration of the spins of the system, then let

Gi = {γ = e0e1 . . . : in(e0) = i} , i = 0, 1, . . . , m − 1. (9)

Now �A = ⋃m−1
i=0 Gi (disjoint union).

As we mentioned in the introduction one of the objectives is to prove that
the ratio µA(q)(Cn (γ ))

w
q
A(γ ) exp(−nFA(q))

is uniformly upper and lower bounded, for any n, q, γ .

Before doing this we must to introduce some background. In the space �A =
{x : x = (xk)k∈Z+ : A(xk, xk+1) = 1, xk ∈ �} can be put the metric dt (x, y) =∑∞

k=0
|xk−yk |

t k , t > 1. It does not matter which value of t is considered because
all metrics dt induce the same topology, (5) but it is convenient to take a large
value of t. The topology induced by the metrics make �A a compact space and
agrees with the topology product of discrete topology in �. The distance for finite
sequences or finite paths can be obtained as induced by the metric dt taking a finite

sum: if γ = e0 . . . en−1, γ ′ = e′
0 . . . e′

n−1 then dt (γ, γ ′) = ∑n−1
k=0

|in(ei )−in(e′
i )|

t k . The
following metric can be obtained from dt , let dn

t defined in such a way that if
x ∈ �A, and �n(x) is the truncation of the infinite sequence x to its first n terms
which is represented by the path γ , then the dn

t −ball centered in x with radius
ε = t−n/2 equals the cylinder Cn(γ ) for any x ∈ Cn(γ ) , or two points x, y are
within δ–distance in dn

t if and only if all the paths representing their truncations
to sequences of length ≤ n, are within δ–distance in dt . A set E ⊂ �A is said
to be n–separated if for any x, y ∈ E, x �= y, it holds dn

t (x, y) > ε = t−n/2, it
means that all the paths representing �i (x), �i (y), i ≤ n, can be distinguished
with precision ε. Due to the compactness of �A the separated sets are finite.

If A is an aperiodic matrix and γ is an admissible path of length n, then
�A ∩ Cn(γ ) �= ∅ and contains a sequence x such that a finite restriction of x gives
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a cycle. (5) This expresses the density of the cycles in the space of configurations. In
particular under the aperiodicity of the matrix the system (GA, �A) has the so called
specification property, due to Bowen, (1) which naively states that for specified
admissible paths in GA can be found a closed path, i.e. a cycle, approximating them
with a certain precision. More formally the specification is defined as follows: for
any δ > 0 there is an integer p(δ) such that if I = {n1, n2, . . . , nk} ⊂ [a, b] is
an interval of positive integers and x1, x2, . . . , xr ∈ �A then there exists a cycle
γ of length (b − a)+ p(δ) such that dt (γ j , γ

i
j ), where γ j is the restriction of γ

to its j first edges and γ
j

i are the paths representing � j (xi ), j = n1, n2, . . . , nk,

i = 1, 2, . . . , r.
Another result to be used later is that the weights as functions on the edges

has a “bounded distortion” if consider paths which within a distance not exceeding
a certain ε, this means if γ = e0 . . . en−1, γ ′ = e′

0..e
′
n−1 are admissible paths with

dt (γ, γ ′) < ε then

C−1 ≤
∏n−1

i=0 w
q
A(ei )

∏n−1
i=0 w

q
A(e′

i )
≤ C,

for some constant C > 0 and for any positive integer n with a fixed q. This
conditions can be rewritten as

∣
∣
∣
∣
∣

n−1∑

i=0

log w
q
A(ei ) −

n−1∑

i=0

log w
q
A(e′

i )

∣
∣
∣
∣
∣
< K ,

for some K . This can established adapting a result formulated in a more general
context (for instance see Ref. 6).

Let us consider a partition function defined from a counting of points in
separated sets: let

Nn(q) = sup

⎧
⎨

⎩

∑

γ=�n (x),x∈E

w
q
A(γ ) : E is n–separated

⎫
⎬

⎭
, (10)

by �n(x) = γ we actually mean �n(x) is represented by the path γ. Then let

G A(q) = lim
n→∞

1

n
log(Nn (q)). (11)

Proposition 3. The function G A(q) equals the free energy FA(q).

Proof: Let n ≥ p(δ) an let E be a n− p(δ) separated set (p(δ) is the specification
number), if x ∈ E then by the specification property there is a n–length cycle γ

such that dt (γn−p(δ), ηn−p(δ) ) < δ, where ηn−p(δ) represents �
n−p(δ)

(x),recall that with
γ j we denote the restriction of γ to its j first edges. The assignation of γ to any
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configuration x is injective. Let us denote by ei the edges of γ and by e′
i denoting

the edges of η, we have

n−1∑

i=0

log w
q
A(ei ) =

n−p(δ)−1∑

i=0

log w
q
A(ei ) +

p(δ)−1∑

i=0

log w
q
A

(
ei+n−p(δ)

)

and by the mentioned bounded distortion property of the weights we get

n−1∑

i=0

log w
q
A(ei ) ≥

n−p(δ)−1∑

i=0

log w
q
A(e′

i ) − K −
p(δ)−1∑

i=0

log w
q
A(ei+n−p(δ)),

let φ a map defined on paths which assigns, for fixed q, to any γ the number
log w

q
A(in(γ )), where in(γ ) denotes the initial edge of γ, so that

∣
∣
∣
∣
∣

N−1∑

i=0

log w
q
A(ei ))

∣
∣
∣
∣
∣
≤ N‖φ‖0,

for any sequence of N edges considered. In this way we can write

n−1∑

i=0

log w
q
A(ei ) ≥

n−p(δ)−1∑

i=0

log w
q
A(e′

i ) − K − p(δ) ‖φ‖0 . (12)

Thus summing over the cycles of length n is obtained

Zn(q) =
∑

|γ |=n

w
q
A(γ ) ≥ exp(−K − p(δ) ‖φ‖0) × Nn−p(δ) (q) , (13)

for n enough large.
To prove the opposite inequality, we firstly point out that the space of configu-

rations �A has the following property of expansiveness: for any x, y ∈ �A, x �= y,
there is constant δ > 0 such that dn

t (x, y) > δ for some positive integer n, this
means that all paths representing the truncations �i (x), �i (y), i ≤ n, can be dis-
tinguished with precision δ. To see that certainly �A possesses this property notice
that the partition G = {Gi }, Gi = {γ = e0e1 . . . : in(e0) = i} is such that if {Gxk }
is sequence of members of G indexed by elements of � = {0, 1, . . . , m − 1} then⋂∞

k=0 Gxk has an only point which is precisely the configuration x = (xk)k∈Z+ .
Let δ the Lebesgue number of the covering G, recall that �A is compact, then
it must be dn

t (x, y) > δ for some n, because if it were dn
t (x, y) < δ for any

n then x, y must belong to a set Gxn for every n and so x, y ∈ ⋂∞
k=0 Gxk ,

but it is no possible if x �= y. Next we show that the elements of the set
Cn = {γ : γ is a cycle with |γ | = n} are n–separated with a certain precision, with
n enough large. The set Cn may be also considered as a subset of the space of
infinite sequences, i.e. the set �A, indeed we have a natural identification of Cn
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with {x : �n(x) is represented by a cycle γ with |γ | = n} ⊂ �A, this identifica-
tion is done by extending a finite cycle γ = e0e1 . . . en−1, with en−1 = e0, to an
infinite sequence by infinitely adding to γ periodic blocks e0e1 . . . en−2e0. Let now
x, y ∈ Cn and let γ, γ ′ be the representatives of �n(x), �n(y) respectively and
we take

η := max
{
dt (γi , γ

′
i ) : i = 1, 2, . . . , n

}
,

where as ever γi , γ
′
i mean the restriction to the first i−edges. So that for every

n the representatives of �n(x), �n(y) are within dt –distance at most η, because
the periodicity of the sequences, therefore it should be η > δ (the constant of
expansiveness), otherwise it would be x = y by definition of expansiveness. Thus
dn

t (x, y) > η > t−n/2, for enough big n.

Now, since for calculating Zn(q) the sum is taken over the cycles in Cn,which
are as seen separated and

Nn(q) = sup

⎧
⎨

⎩

∑

γ=�n (x),x∈E

w
q
A(γ ) : E is n–separated

⎫
⎬

⎭

it has Zn(q) ≤ Nn(q) for n large. Taking corresponding limits concludes G A(q) =
FA(q). �

Next we established a key result for the classification of Gibbs states.

Theorem 2. If µA(q) is the Gibbs state associated to a matrix A(q) ∈
Mm(Z+[ exp]) then for any n, q and for any path γ of length n, there are constants
A1, A2 > 0 such that

A1 ≤ µA(q)(Cn(γ ))

w
q
A(γ ) exp(−nFA(q))

≤ A2 (14)

Proof: Let p(δ) be the number of the specification property and let r ≥ n +
2p(δ), s = r − n − 2p(δ). Recall that the r–volume ensemble of a cylinder Cn is
given by

µr,A(q)(Cn) =
∑

γ∈Cn∩Cr
w

q
A(γ )

∑
γ∈Cr

w
q
A(γ )

.

Let Es be a maximal s–separated (in this case maximal means with maximal
cardinality among the s–separated sets), if x ∈ Es then by the specification prop-
erty there is a γ ∈ Cn ∩ Cr , injectively assigned, such that dt ((γn+p(δ))s, γ

′) < δ,
where γ ′ represents �s(x). Let y ∈ �A with a representative η = f0 f1 . . . fn−1
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for �n(y). Let us denote with e ’s the edges of γ and with e′ ’s the edges of γ ′.
By the specification condition and the bounded distortion property, we have, by
fixing q :

∣
∣
∣
∣
∣

s−1∑

i=0

log w
q
A(e′

i ) −
s−1∑

i=0

log w
q
A(ei+n+p(δ))

∣
∣
∣
∣
∣
< K

and

∣
∣
∣
∣
∣

n−1∑

i=0

log w
q
A(ei ) −

n−1∑

i=0

log w
q
A( fi )

∣
∣
∣
∣
∣
< K

for some constant K . Therefore

∣
∣
∣
∣
∣

r−1∑

i=0

log w
q
A(ei ) −

s−1∑

i=0

log w
q
A(e′

i ) −
n−1∑

i=0

log w
q
A( fi )

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

n−1∑

i=0

log w
q
A(ei ) −

p(δ)−1∑

i=0

log w
q
A(ei+n) −

n−1∑

i=0

log w
q
A

(
ei+n+p(δ)

)

−
s−1∑

i=0

log w
q
A(e′

i ) −
n−1∑

i=0

log w
q
A( fi ) −

p(δ)−1∑

i=0

log w
q
A

(
ei+n+s+p(δ)

)
∣
∣
∣
∣
∣

≤ 2K +
p(δ)−1∑

i=0

log w
q
A

(
ei+n+p(δ)

)+
p(δ)−1∑

i=0

log w
q
A

(
ei+n+s+p(δ)

)

≤ 2(p(δ)‖φ‖0) + 2K .

Thus

exp(−2(p(δ) ‖φ‖0)) exp(−2K ) ≤
∏r−1

i=0 w
q
A(ei )

s−1∏

i=0
w

q
A(e′

i )
n−1∏

i=0
w

q
A( fi )

≤ exp(2(p(δ) ‖φ‖0)) exp(2K ).
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Then we have

µr,A(q)(Cn(η)) =

∑

γ∈Cn (η)∩Cr

w
q
A(γ )

∑

γ∈Cr

w
q
A(γ )

≥

exp(−2(p(δ)‖φ‖0)) exp(−2K )
n−1∏

i=0

w
q
A( fi )

∑

γ ′=�s (x)
x∈Es

w
q
A(e′

i )

∑

γ∈Cr

w
q
A(γ )

,

where in the sum, as before, by γ ′ =�s(x) we mean γ ′ represents �s(x). Therefore
if

Ns(q) = sup

⎧
⎨

⎩

∑

γ ′=�n (s),x∈Es

w
q
A(γ ) : Es is s − separated

⎫
⎬

⎭

then

µr,A(q)(Cn(η)) ≥ exp(−2(p(δ)‖φ‖0)) exp(−2K )
∏n−1

i=0 w
q
A( fi )Ns(q)

∑
γ∈Cr

w
q
A(γ )

,

and by the proposition 3 and the definition of FA(q) we have, for s, r large enough,
Ns(q) ≥ L exp(s FA(q)),

∑
γ∈Cr

w
q
A(γ ) ≤ M exp(r FA(q)), L , M constant. Thus

µr,A(q)(Cn(η)) ≥ exp(−r FA(q)) exp(−2(p(δ) ‖φ‖0)) exp(−2K )
L

M

n−1∏

i=0

w
q
A( fi )

≥ K1 exp(−nFA(q))
n−1∏

i=0

w
q
A( fi ), (15)

with K1 = exp(−2(p(δ)‖φ‖0)) exp(−2K )
L

M
. To take the weak limit of µr,A(q),

can be considered the sequence nk = r = n + 2p(δ), and with k → ∞ gets

µA(q)(Cn(η)) ≥ K1 exp(−nFA(q))
n−1∏

i=0

w
q
A( fi ). (16)

For finding the other bound proceeds in a relatively similar way, so we shall
omit some details and just point out the main aspects. Let η be an arbitrary path
of length n with edges f0 f1 . . . fn−1 and let γ ∈ Cn(η) ∩ Cr , with edges denoted



406 Mesón and Vericat

with e0e1 . . . , we have
∣
∣
∣
∣
∣

r−1∑

i=0

log w
q
A(ei ) −

n−1∑

i=0

log w
q
A( fi ) −

r−n−1∑

i=0

log w
q
A(ei+n)

∣
∣
∣
∣
∣
< K .

Now

µr,A(q)(Cn(η)) =
∑

γ∈Cn (η)∩Cr
w

q
A(γ )

∑
γ∈Cr

w
q
A(γ )

≤ 1
∑

γ∈Cr
w

q
A(γ )

exp(K )
n−1∏

i=0

w
q
A( fi ).

r−n−1∏

i=0

w
q
A(ei+n) ≤ exp(K )

C1
exp(−r FA(q))Nr−n(q)

n−1∏

i=0

w
q
A( fi ),

for some constant C1. Then

µr,A(q)(Cn(η)) ≤ exp(K )

C1
C2 exp(−nFA(q))

n−1∏

i=0

w
q
A( fi ). (17)

And the lower bound is obtained with the weak limit of µr,A(q), like above. �

Before establishing the classification theorem we review some material from
the Ruelle thermodynamic formalism(11) and basic Ergodic Theory. The en-
tropy of a probability measure µ can be calculated (c.f. Shannon–Mc.Millan
theorem(9)) as h(µ) = limn→∞ − 1

n log µ(Cn), where Cn is any n−cylinder. Thus
we have by Theorem 2 log βA(q) = FA(q) = h(µA(q)) + lim|γ |→∞ 1

|γ | log w
q
A(γ ).

The term 1
|γ | log w

q
A(γ ) can be considered as an ergodic average, indeed if we let,

for fixed q, the map φA : γ �→ log w
q
A(γ ) = ∑n−1

i=0 log w
q
A(ei ), then by the ergodic

theorem lim|γ |→∞ 1
|γ | log w

q
A(γ ) = µ(φA), µ − a.e. for every ergodic measure µ.

Here is considered the measure as a functional. Therefore:

log βA(q) = FA(q) = h(µA(q)) + µA(q)(φA)

and so µA(q) is an equilibrium state for the observable φA.
The set IφA = {µ : FA(q) = h(µ) + µ(φA)} is a compact convex set whose

extremal elements, i.e. those which admit just a trivial convex combination,
are the pure thermodynamic phases. Let TA = {µ : FA+B(q) − FA(q) ≥ µ(φB) :
for any matrix B}, this set, which is non empty, is called the set of tangent func-

tionals to F at A.If the entropy map µ �→ h(µ) is upper semi-continuous, with
the weak topology in the space of measures, then IφA = TA and the expansiveness
property in the space of sequences makes this map upper semi-continuous. (13) So
that the equilibrium states are in correspondence with the tangents to the graphics
of FA(q), now for the coexistence of thermodynamic phases the free energy FA(q),
or of course βA(q), should have singularities. In other words a phase transition is
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detected when the free energy is non differentiable. As we have already mentioned,
by a result of Tuncel, for an irreducible matrix A the map βA(q) is analytic, and
so in this case there is an unique equilibrium state for the observable φA for any
fixed q. Besides for this observable any equilibrium state is a Gibbs state.

If we let wA+C I (e) = wA(e)C, for any constant C, then we have for any path
γ = e0 . . . en−1 that wA+C I (γ ) = wA(γ )Cn. Thus if A(q), B(q) are matrices such
that for each n holds wA(γ ) = wB(γ )Cn , for some C and for any cycle γ of length
n then µn,A(q) = µn,B(q) as is directly seen for the definition of Gibbs states and so
that µA(q) = µB(q). In particular µA(q) = µA(q)+C I . If the reciprocal of this result
were proved then it would obtained a classification of Gibbs states. In this vein:

Theorem 3. If µA(q) = µB(q) then there is a constant C = C(q) > 0 such that
wA(γ ) = wB(γ )Cn, for any n and for any cycle of length n. Or, by above comment,
µA(q) = µB(q) if and only if SA = SB+C I .

Proof: We consider “renormalizations” Ã(q) = A(q) − FA(q)I, B̃(q) =
B(q) − FB(q)I, for which µ Ã(q) = µA(q), µB̃(q) = µB(q) and FÃ(q) = FB̃(q) = 0,

for every q. Let µ Ã(q) = µB̃(q) = µ, and Cn = Cn(γ ) is a n–cylinder, by Theorem
2 there are constants A1, A2 > 0 such that A1w Ã(γ ) ≤ µ(Cn(γ )) ≤ A2wB̃(γ ) and
so w Ã(γ ) ≤ A2

A1
wB̃(γ ). If γ is a cycle then is valid w Ã(γ ) = limk→∞ 1

k w Ã(γ k),
where γ k is the path obtained by juxtaposition to γ the same γ by k−times. Thus
we have w Ã(γ ) ≤ limk→∞ 1

k wB̃(γ k) = wB̃(γ ). By a dual argument the opposite
inequality is established. Therefore w Ã(γ ) = wB̃(γ ), so that wA(γ ) = wB(γ )Cn ,
with C = FB (q)

FA(q) . �

4. RIGIDITY FOR LONG RANGE POTENTIALS

As we mentioned in the introduction the rigidity problem for finite interaction
can be solved by means of algebraic properties of some matrices. In particular,
Pollicott and Weiss considered a free energy for potentials depending on a finite
number of coordinates (finite range potentials). The approach we have developed
in previous Sections allows to treat more general interactions than Pollicott and
Weiss ones (e.g. Markov chains) as we pointed out earlier. Herein our aim is
to establish some kind of rigidity results for a class of potentials which include
infinite range interactions, i.e. depending on the entire configuration. In this case
we restrict ourselves to just interaction potentials.

One interesting example in this situation is the Kac model: let � = {±1}
where the transition matrix has all entries equal to1 and the potential is ϕ(x) =
J x0

∑∞
n=1 xnλ

n , with λ ∈ (0, 1); J ∈ R is a coupling parameter.
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In the case of finite range potentials we saw in the Introduction that a primitive
matrix can be defined by

L = L (q) (i, j) =
{

0 if A (i, j) = 0

exp (qϕ(x)) if A (i, j) = 1,
(18)

with x0 = i, x1 = j, for instance in the Ising model ϕ(x) = J x0x1 and L(i, j) =
exp(J xi x j ). Taking into account Eq. (3), we saw that, in a case like this, it can be
considered as partition function

Zn (q) := T r [Ln (q)] . (19)

On the other hand the “thermodynamic limit” limn→∞ 1
n log Zn(q) does exist

and equals log E1(L(q)), where E1 is the leading positive eigenvalue of L. (11)

The existence of such a leading eigenvalue is ensured by the Perron–Frobenius
theorem, since the matrix is primitive.

If we are in the more general situation of potentials that depend on a infinite
number of coordinates, we must work with other class of objects than matrices.
They will be transfer operators, in the style of those introduced by Ruelle in his
thermodynamic formalism.

We start by observing that periodic sequences in the symbolic space

�+
A = {

x = (xi )i∈N : xi ∈ �,∀i ∈ N, A(xi , xi+1) = 1
}

correspond to infinite paths in the associated graphs G and the cycles of length
|γ | = n to sequences with periodic blocks of length n. For any cycle γ we shall
write xγ for the element of �+

A formed by blocks corresponding to γ .
Let us recall the definition of Bernoulli shifts σ : �+

A → �+
A where (σ x)n =

xn+1. We also consider, for a potential ϕ ∈ C(�+
A ), the statistical sum

Sn (ϕ) (x) =
n−1∑

i=0

ϕ(σ i (x)) (20)

and the partition function

Zn (q) = Zn (q, ϕ) =
∑

|γ |=n

exp(Sn(qϕ)(xγ )). (21)

Thus, the free energy, associated to a potential ϕ will be Fϕ(q) =
limn→∞ 1

n log Zn(q). As we mentioned for finite range potentials this free en-
ergy gives the spectral radius of a matrix L(q), like in Eq. (18). For the infinite
range case we would like to relate Zn(q) with operators traces. It must be done by
considering a special class of potentials that we shall describe below. For a cycle
γ a potential ϕ ∈ C(�+

A ) the weights are given by wϕ(γ ) = Sn(ϕ)(xγ ). Therefore
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we shall consider the, unmarked, spectrum

Sϕ = {(wϕ(γ ), n) : γ is a cycle with |γ | = n}. (22)

Next we shall write down the operators needed for our purposes: for ϕ ∈
C(�+

A ), let

Lϕ (�) (x) =
∑

i∈�

A (i, κ0) exp (ϕ (i, x)) χ ((i, x)) , (23)

where (i, x) is the configuration (i, x0, x1,...). The space of finite range potentials,
i.e. depending on a finite number of coordinates, is left invariant by L and so
the operator can be reduced in this subspace to a matrix like L for which the
relationship (18) is satisfied.

Let us return to the Kac model, in this case the transfer operator reads:

Kϕ (�) (x) =
∑

i=±1

exp

(

J x0

∞∑

n=1

xnλ
n

)

χ ((i, x)) . (24)

Next we consider the space of functions A∞(�+
A ) := {ϕ ∈ C(�+

A ) : exists a χ ∈
A∞(DR) with ϕ(x) = χ (π (x))}, where DR = {z : |z| = R} and π is a projection
π : �+

A → DR defined by the assignation x �−→ ∑∞
n=1 xn−1λ

n. The space A∞(U )
is that formed by the complex functions holomorphic in U and continuous in U
(the closure of U ), endowed with the norm ‖χ‖ = supz∈DR

|χ (z)| . On A∞(�+
A )

the operator Kϕ induces another one acting on A∞(DR), which it shall be denoted
also by Kϕ, in the following way: let ψ j : DR → DR , ψ j (z) = λ( j + z), j = ±1,
and thus

Kϕ (�) (z) =
∑

j=±1

exp (J xz) χ (ψ j (z)), (25)

for χ ∈ A∞(DR).
By using the trace formula deduced in Ref. 7 we have

Zn (q) = (1 − λn) T r
(
Kn

qϕ

) = T r
(
Kn

qϕ

)− T r
(
K̃n

qϕ

)
, with K̃ = λK, (26)

what we were looking for i.e. a relationship in the style of (18) with the operator
playing the role of the matrix.

The class of potentials ϕ : �+
A → R within we shall work is that for which

the following conditions be satisfied:

(C1) There is a projection π : �+
A → Rd , for some d ≥ 1, and open sets {Wi } ⊂

Rd such that
π (�+

A ) ⊂ ⋃
i Wi and maps ψi :

⋃
j∈�i

W j → Wi (� j := {i ∈ � : Ai, j =
1}. Besides π (i, x) = ψi (π (x)) ∈ �+

A , recall that (i, x) is the configuration
(i, x0, x1,...).
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(C2) There are neighborhoods Ui ⊂ Cd of Wi such that each ψi extends holo-
morphically to

⋃
j∈�i

U j and applies
⋃

j∈�i
U j strictly itself. By “strictly

inside itself” understands: let D be a bounded connected subspace of a
Banach space B and ψ a holomorphic map on D. It says that ψ applies
D strictly inside itself if

inf
z∈D,z′ ∈B−D

‖ψ(z) − z
′ ‖ ≥ δ > 0.

(C3) There exists holomorphic functions ϕi defined on Ui such that ϕ (i, x) =
ϕi (ψi (π (x))), for any x ∈ �+

A .

These conditions allow to define a transfers operators as:

Lϕ :
⊕

i∈�

A∞ (Ui ) →
⊕

i∈�

A∞ (Ui )

(Lϕ(χ ))i (z) =
∑

j∈�

A(i, j) exp
(
ϕ j

(
ψ j (z)

))
χ
(
ψ j (z)

)
(27)

A trace formula for such an operator, in the style of the Atiyah-Bott formula
on Lefschetz fixed point, is displayed in Ref. 7 as:

T r
(
Lϕ

) =
∑

i∈�

A (i, i) exp (ϕi (zi ))
1

det (1 − Dψi (zκ ))
, (28)

where zi is the fixed point of ψi and Dψ is the differential map of ψ, seen as a
linear operator. It must be pointed out that, by the Earle–Hamilton theorem(2) a
map ψ applying strictly a domain D inside itself has exactly a fixed point z ∈ D
with ‖Dψ(z)‖ < 1.

A relevant fact about these transfer operators is that they are nuclear. Let
us recall that an operator L acting on a Banach space B is nuclear if there exist
sequences (xn) ⊂ B, ( fn) ⊂ B∗ (the dual space of B) with ‖xn‖ = 1, ‖ fn‖ = 1 and
numbers (ρn) with

∑∞
n=0 |ρn| < ∞ such that L(x) = ∑∞

n=0 ρn fn(x)xn for every
x ∈ B. The nuclearity of operators similar to (18) and also for those corresponding
to a continuous case was established in Ref. 8. To adapt these demonstrations for
operators (18) is immediate and so we will omit it.

Let us consider now the family of operators Lq , which are the transfer
operators associated to the family of potentials {qϕ}. In this case the condition
(C3) is formulated as: there exists holomorphic functions ϕi,q defined on Ui such
that qϕ (i, x) = ϕi,q (ψi (π (x))), for any x ∈ �+

A .

By the Grothendieck theory for nuclear operators (3,4) the Fredholm de-
terminant det(1 − zLq ) is an entire map in the both two variables z, q and
it has the expansion det(1 − zLq ) = exp(−∑∞

n=1
zn

n T r (Ln
q )). If the charts ψi ,

defined in (C1) − (C3) are constant then by the Mayer trace formula holds
Zn(q) := Zn(qϕ) = T r (Ln

q ), this is the case for instance of the Ising model and
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many other statistical systems. If the ψi are linear, like in the Kac-model, there is
also a relationship between the partition function Zn(q) and the trace of Ln

q in the
style of (26). The general relationship between partition function and trace is

Zn(q) =
d∑

p=0

T r
[(
L(p)

q

)n]
, (29)

where L(p)
q are operators defined on

⊕
κ∈�

∧
p B(U�), where

∧
p B(Ui ) is the

space of the differential p-forms holomorphic on Ui , as

L(p)
q :

⊕

i∈�

∧

p

B (Ui ) →
⊕

i∈�

∧

p

B (Ui ) , Ui ⊂ Cd

(
L(p)

q

(
wp

))
i
(z) =

∑

j∈�

Ai, j exp
(
ϕ j,q (z)

)∧

p

Dψ j (z)
(
wp

) (
ψ j (z)

)
, (30)

here wp ∈ ∧p B(Ui) and
∧

p Dψ is the p-fold exterior product of differential

map Dψ (considered a linear operator). It has L(0)
q = Lq and any L(p)

q is nuclear,

this results a natural of extension of the fact that L(0)
q does. Thus the Fredholm

determinant Dp(z, q) := det(1 − zL(p)
q ) is entire in z and q, for any p.

Now for p = 0, d = 1 and constant charts there is an obvious and direct
relationship between the Fredholm determinant and the Ruelle zeta function (11)

which is defined as

ς (z, q) = ςϕ (z, q) = exp

( ∞∑

n=1

zn

n
Zn (q)

)

. (31)

We have then ς (z, q) = 1
D0(z,q) . If the charts are linear we obtain an expression of

the partition function as the difference of T r (Ln
q ) and a constant by T r (Ln

q ), like
in Eq. (26) for the Kac-model. So that in this case are also related the determinant
and zeta. For d ≥ 2 the connection comes from Eq. (29).

Another result about the transfer operators Lq is the relationship between the
spectral radius ρ(Lq ) and the topological pressure, which is ρ(Lq ) = exp(T (q)).
This was proved by Ruelle for the operators (23). In Ref. 8, was established the
analyticity of the map q �−→ ρ(Lq ), provided condition in the style of (C1) − (C3)
were fulfilled, and consequently the absence of phase transitions.

The following proposition will serve to obtain a description of the transfer
operators spectrum.

Proposition 4. The spectrum of the operators L = φCψ , where Cψ is the com-
position operator Cψ (χ )(z) = (χ ◦ ψ)(z), acting on space of functions A∞(U ) is
discrete and is formed by eigenvalues En = {φ(z)(Dψ(z))n} where z is a fixed
point of ψ and with 0 as the unique accumulation point.



412 Mesón and Vericat

Proof: The fact of that the operators L = φCψ have discrete spectrum is
actually due to Ref. 7 Let ψ ∈ A∞(D), we have the eigenvalues equation
Lχ (z) = φ(z)χ (ψ(z)) = Eχ (z). Clearly if χ (z) �= 0 then an eigenvalue of L
is E = φ(z), where z is a fixed point of ψ. If χ (z) = 0 then differentiating, with
respect to z, the above eigenvalue equation is obtained �

Dφ (z) × χ (z) + φ (z) × Dχ (z) Dψ (z) = E Dψ (z) .

Thus if Dφ(z) �= 0 then E = φ(z)Dψ(z). Now the eigenvalues of L (recall
that it is discrete) is the set

En = {
φ (z) (Dψ (z))n} .

Recall that by the Earle–Hamilton theorem ‖Dψ(z)‖ < 1, therefore 0 is the
only point of accumulation .

Notice that

T r (L) =
∞∑

n=1

En =
∞∑

n=1

φ(z)(Dψ(z))n = φ(z)

det(1 − Dψ(z))
,

the Mayer trace formulae. �

Remark. The above result describes indeed the spectrum of the transfer opera-
tors since they are finite sums of composite ones.

Now we shall show that the Ruelle zeta function determines the equilibrium
state for a broader class of potentials than in Ref. 10.

Proposition 5. It holds ςϕ1 (z, q) = ςϕ2 (z, q) =⇒ Sϕ1 = Sϕ2 (Sϕ1 ,Sϕ2 are the
unmarked orbit spectra of the potentials ϕ1, ϕ2 as defined in (22)).

Proof: We have

ςϕ(z, q) = exp

( ∞∑

n=1

zn

n
Zn(q)

)

,

with

Zn(q) =
∑

|γ |=n

exp(Sn(qϕ)(xγ )).

The power expansion determines an analytical function in the disc |z| <

exp(Fϕ(q)). If we have an expression of the form B(q) = ∑N
i=1 λ

q
i , λi > 0, then

from the Newton identities is deduced that B(q) uniquely determines the λi , it
just needs to know B(1), B(2),. . . , B(N ). This can be applied to the finite sum∑

|γ |=n[exp(Sn(ϕ)(xγ ))]q and so the terms Sn(ϕ(xγ )) are uniquely determined by
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Zn(q). In turn the coefficients Zn(q) are recovered from the expansion differen-
tiating it with respect to q. In this way the spectrum Sϕ is uniquely determined
from the zeta function. �

Remark. In fact the above result can be proved in a more general and abstract
context. In can be taken a compact metric space X and a map f : X → X which
satisfies the properties of expansiveness and specification. Here we are restricting
to a more Statistical Mechanics point of view, so we present the result in the above
level.

Now we state the main result of this section:

Theorem 4. For spin lattice systems and potentials ϕ1, ϕ2 for which the condi-
tions (C1) − (C3) are fulfilled the following rigidity result is verified: Fϕ1 (q) =
Fϕ2 (q) =⇒ Sϕ1 = Sϕ2 , or the free energy determines the unmarked spectrum.

Proof: The scheme to follow for the demonstration is: firstly we consider the
Fredholm determinant D(z, q) and the map β(q) = 1

ρ(Lq ) = exp(−Fϕ(q)), so that
D(β(q), q) = 0. Let P(z) be an analytic map such that P(β(q)) = 0 and with β(q)
determining P. We show that P(z) is a factor of D(z, q), but we also will prove that
is not possible to write D(z, q) = P(z, q)Q(z, q), where P, Q are non-constant
maps. So that the Fredholm determinant is in some sense “minimal”, and then
β(q) determines the Fredholm determinant. By the relationship of D(z, q) with
the zeta function and by the proposition 3, the claim of the theorem will be proved.

For the above proceed we use an approach based on Tuncel
developments. (12) Let

R =
{

k∑

i=0

ni a
q
i : ni ∈ Z,ai > 0

}

,

if we set exp = {aq : a ∈ R+} then Z[exp] = R, i.e. R is the ring of integral
combinations of elements in exp, or we can write

R =
{

β : R → R :β(q) =
k∑

i=0

ni a
q
i

}

.

If the potential ϕ depends on a finite number of coordinates, for instance ϕ =
ϕ(xi , x j ), then it can be defined a family of matrices H (q)with coefficients in
R = Z[exp] by

H (q) =
{

0 if Ai, j = 0

expq ϕ(x) if Ai, j = 1
,
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with x0 = i, x1 = j. If β(q) = βA(q) = ρ(A(q)), is proved in Ref. 12 that β(q)is
analytic and βA(1) = log E1, where E1 is the leading eigenvalue of A = A(1),
existing by the Perron–Frobenius theorem.

In our case with the potential depending in general of the entire configuration
we shall take β(q) = 1

ρ(Lq ) = exp(−Fϕ(q)), which as we point out was proved
to be analytic and verifies D(β(q), q) = 0. Recall that by the Proposition 2 the
transfer operators have discrete spectrum and so we can put D(z, q) = det(1 −
zLq ) = ∏∞

n=1(1 − zEn(q)), where E1(q) = exp(Fϕ(q)), so that the z-zeros of the
Fredholm determinant are the inverses of the eigenvalues of Lq .

As we anticipate as the beginning of the proof we consider a map P(z, q)
with P(β(q), q) = 0, analytic in z and expanded with coefficients in R. Let F
be field of fractions R/R and let G be the set of expansions of analytic maps
with coefficients in F . We consider an ideal I in G given by G ∈ I if and
only if G can be expressed as G = Q/R where Q = Q(z, q)is an analytic map
in z with expansion with coefficients in R and Q(β(q), q) = 0 for some analytic
function β(q) and R ∈ R. By the analyticity of β(q) the choice does not depend on
R. So I = {G : G can be expanded with coefficients in F , and G(β(q), q) = 0}.
Let I = PG for some P with coefficients in F , we shall show that the expansion
has really coefficients in R. We have that the Fredholm determinant belongs
to I and so it can be written: D(z, q) = P(z, q)Q(z, q), where P and Q have
coefficients in F and D with expansion in R. We then have

D =
∞∑

n=0

anzn, with an =
∑

in∈In

Min Aq
in

∈ R, In finite

P =
∞∑

n=0

bnzn, with bn =
∑

jn∈Jn
N jn Bq

in
∑

jn∈Jn
N

′
jn

B
′q
in

∈ F , Jn finite

Q =
∞∑

n=0

cnzn, with cn =
∑

�n∈Ln
U�n Cq

�n
∑

�n∈Ln
U

′
in

C
′q
in

∈ F , Ln finite.

For any positive integer n let Sn be the subgroup of R+ generated by Ain ,
B jn B

′
jn
, C�n , C

′
in

and Z[Sn] is an unique factorization domain. We have a0 + a1z +
· · · + anzn = (b0 + b1z + · · · + ar zr )(c0 + c1z + · · · + cn−r zn−r ), then each bi

can be expressed as bi = b̃i/b with b̃i ∈ Z[Sn] as well as any ci = c̃i/c with c̃i ∈
Z[Sn] and for some b, c such that (b, b̃1, . . . , b̃r ) = 1, (c, c̃1, . . . , c̃n−r ) = 1. Hence
the following expression results an equation in Z[Sn] bc(a0 + a1z + · · · + anzn) =
(̃c0 + c̃1z + · · · + c̃n−r zn−r )(̃b0 + b̃1z + · · · + b̃r zr ), since Z[Sn] is an unique fac-
torization domain each factor of bc must divide all the b̃i or all the c̃i , and besides
is invertible. Thus c is a “monomial” and so P has actually coefficients in R.

Therefore if P(z, q) has coefficients in R and β(q) is a z-zero of P then this map
is a factor of the Fredholm determinant D(z, q).
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Next we prove that the Fredholm determinant is minimal. We consider a
“truncation”

DN (z, q) :=
N∏

n=1

(1 − zEn(q)) ∈ R[z].

In this way

DN (z, q) = 1 +
(
∑

i

Ei

)

z +
⎛

⎝
∑

i, j

Ei E j

⎞

⎠ z2 + · · · +
[

(−1)n
∏

i

Ei

]

zN .

Another expression for the Fredholm determinant is

D(z, q) = 1 +
∞∑

n=1

Dn(q)zn,

where

Dn(q) =
∑

(i1 ,...,im )
i1+···+im =n

(−1)m

m!

m∏

j=1

1

i j
T r
(
Li j

q
)
,

so that

DN (z, q) = 1 + T r (Lq )z + T r
(
L2

q

)
z + · · · +

⎡

⎢
⎣

∑

(i1 ,...,im )
i1+···+im =n

(−1)m

m!

m∏

j=1

1

i j
T r
(
Li j

q
)

⎤

⎥
⎦ zN .

Let us assume that D(z, q) = P(z, q)Q(z, q), as we seen P, Q have expan-
sions with coefficients in R if D(z, q) does. We compare the coefficients in each
N−truncation of D and P.Q. Thus

DN (z, q) = 1 +
(
∑

i

Ei

)

z +
⎛

⎝
∑

i, j

Ei E j

⎞

⎠ z2 + · · · +
[

(−1)n
∏

i

Ei

]

zN

=
⎡

⎣
∑

j0∈J0

N j0 Bq
i0

+
⎛

⎝
∑

j1∈J1

N j1 Bq
i1

⎞

⎠ z + · · · +
⎛

⎝
∑

jr ∈Jr

N jr Bq
ir

⎞

⎠ zr

⎤

⎦

×
⎡

⎣
∑

�0∈L0

U�0 Cq
�0

+
(
∑

�1∈L1

U�1 Cq
�n1

)

z + · · ·

+
⎛

⎝
∑

�N−r ∈L N−r

U�N−r C
q
�N−r

⎞

⎠ zN−r

⎤

⎦ .
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Notice that the product of the eigenvalues Ei , i = 1, . . . , N can be considered
as the determinant of certain N × N−matrix H = (ai, j ), so

N∏

i=1

Ei =
∑

σ∈Pn

a1,σ (1) . . . aN ,σ (N ),

where Ei = Ei (q), ai, j = ai, j (q) and Pn is the group of permutations of n-
elements. Besides

N∑

i=1

Ei = T r (H ) =
∑

i

ai,i .

On the other hand the matrix can be taken H is such that

an1
i1, j1

. . . ank
ik ,ik

�= 1, for any (i1, . . . , ik) ,
(
i j1 , . . . , jk

)
and n1,...,nk ∈ Z. (32)

The coefficient of zr in the expansion of D(z, q) is of the form

a1,σ (1) . . . aN ,σ (N )

ai1,i1 . . . air ,ir

,

where σ ∈ Pn fixes (i1, . . . , ir ), and of zN−r is the form

a1,σ (1) . . . aN ,σ (N )

ai1,i1 . . . aiN−r ,iN−r

with σ ∈ Pn fixing (i1, . . . , iN−r ).
Then, we have

∑

σ∈Pn

a1,σ (1) . . . aN ,σ (N ) =
∑

jr ,�N−r

N jr U�N−r Bq
jr

Cq
�N−r

,

so that there is a correspondence between a1,σ (1) . . . aN ,σ (N ) and the coefficients
Bq

ir
Cq

�N−r
. Thus comparing the coefficients of zr we have Bq

jr
Cq

�0
= a1,σ (1)...aN ,σ (N )

ai1 ,i1 ...air ,ir

and also a similar expression for zN−r . If σ ∈ Pn does not have fixed points
then a1,σ (1) . . . aN ,σ (N ) appears in the constant term of the development of the
D(z, q), but is not possible to write it as a product of the coefficients Bq

jr
Cq

�N−r
.

To illustrate this, consider the cyclic permutation σ = (1, 2, 3) and the sum∑
σ∈P3

a1,σ (1)a2,σ (2)a3,σ (3), which of course includes σ . The coefficient of z2 is a
sum of terms ai. j a j,i and ai.i a j, j . Now a1,2a2,3a3,4 must be of the form ai. j a j,i am,n ,
which could not be possible by (32). �

We can complete the analysis by setting that the spectrum determines the
equilibrium states of the potentials . For this it can be performed a similar approach
for the classification of Gibbs states as done in Sec. 3.
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